O’Neill E, Awale G, Daneshmandi L, Umerah O, Lo KWH (2018) The roles of ions on bone
regeneration. Drug Discov Today 23(4):879–890
Ovesen J, Moller-Madsen B, Thomsen JS, Danscher G, Mosekilde LI (2001) The positive effect of
zinc on skeletal strength in growing rats. Bone 29:565–570
Pang YX, Bao X (2003) Influence of temperature, ripening time and heat treatment on the
morphology and crystallinity of hydroxyapatite nanoparticles. J Eur Ceram Soc 23:1697–1704
Porter AE, Patel N, Skepper JN, Best SM, Bonfield W (2003) Comparison of in-vivo dissolution
processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics. Biomaterials
24:4609–4620
Prakasam M, Locs J, Salma-Ancane K, Loca D, Largeteau A, Berzina-Cimdina L (2015) Fabrica-
tion, properties and applications of dense hydroxyapatite: a review. J Funct Biomater 6
(4):1099–1140. https://doi.org/10.3390/jfb6041099
Pramanik N, Mishra D, Banerjee I, Maiti TK, Bhargava P, Pramanik P (2009) Chemical synthesis,
characterization
and
biocompatibility
study
of
hydroxyapatite/chitosan
phosphate
nanocomposite for bone tissue engineering applications. Int J Biomater 1:1–8
Prasad AS (1995) Zinc: an overview. Nutrition 11:93–99
Qu HB, Wei M (2006) Effect of fluoride contents in fluoridated hydroxyapatite on osteoblast
behavior. Acta Biomater 2:113–119
Rajendran A, Balakrishnan S, Kulandaivelu R, Nellaiappan S (2018) Multi-element substituted
hydroxyapatites: synthesis, structural characteristics and evaluation of their bioactivity, cell
viability and antibacterial activity. J Sol Gel Sci Technol 86(2):441–458
Rapuntean S, Frangopol PT, Hodisan I, Tomoaia G, Oltean-Dan D, Mocanu A, Prejmerean C,
Soritau O, Racz LZ, Tomoaia-Cotisel M (2018) In vitro response of human osteoblasts cultured
on strontium substituted hydroxyapatites. Rev Chim 69(12):3537–3544
Reginster JY, Bruyere O, Sawicki A, Roces-Varela A, Fardellone P, Roberts A (2009) Long-term
treatment of postmenopausal osteoporosis with strontium ranelate: results at 8 years. Bone 45:
1059–1064
Rey C (1998) Calcium phosphates for medical applications. In: Calcium phosphates in biological
and industrial systems, pp 217–225
Rey C, Renugopalakrishnan V, Collins B, Glimcher MJ (1991) Fourier transform infrared spectro-
scopic study of the carbonate ions in bone mineral during aging. Calcif Tissue Int 49:251–258
Robinson L, Salma-Ancane K, Stipniece L, Meenan BJ, Boyd AR (2017) The deposition of
strontium and zinc co-substituted hydroxyapatite coatings. J Mater Sci Mater Med 28(3):51–55
Sadat-Shojai M, Khorasani M, Dinpanah-Khoshdargi E, Jamshidi A (2013) Synthesis methods for
nano-sized hydroxyapatite with diverse structures. Acta Biomater 9:7591–7621
Shah FA, Brauer DS, Wilson RM, Hill RG, Hing KA (2014) Influence of cell culture medium
composition on in vitro dissolution behavior of a fluoride-containing bioactive glass. J Biomed
Mater Res A 102:647–654
Sprio S, Tampieri A, Landi E, Sandri M, Martorana S, Celotti G, Logroscino G (2008) Physico-
chemical properties and solubility behaviour of multi-substituted hydroxyapatite powders
containing silicon. Mater Sci Eng C 28:179–187
Sridhar TM, Arumngam TK, Rajeswari S, Subbaiyan M (1997) Electrochemical behavior of
hydroxyapatite-coated stainless-steel implants. J Mater Sci Lett 16:1964–1966
Sundfeldt M, Widmark M, Wennerburg A, Karrholm J, Johansson CB (2002a) Does sodium
fluoride in bone cement affect implant fixation? Part 1 bone tissue response, implant fixation
and histology in nine rabbits. J Mater Sci Mater Med 13:1037–1043
Sundfeldt M, Persson J, Swanpalmer J, Wennerberg A, Kärrholm J, Johansson CV, Carlsson LV
(2002b) Does sodium fluoride in bone cement affect implant fixation part II: evaluation of the
effect of sodium fluoride additions to acrylic bone cement and the fixation of titanium implants
in ovariectomized rabbits. J Mater Sci Mater Med 13:1045–1050
Supova M (2015) Substituted hydroxyapatites for biomedical applications: a review. Ceram Int 41:
9203–9231
23
Unleashing Potential of Bone Mimicking Nanodimensional Hydroxyapatites and. . .
453